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Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging
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We present a theoretical comparison of the signal-to-noise characteristics of quantum versus thermal ghost
imaging. We first calculate the signal-to-noise ratio of each process in terms of its controllable experimental
conditions. We show that a key distinction is that a thermal ghost image always resides on top of a large
background; the fluctuations in this background constitutes an intrinsic noise source for thermal ghost imaging.
In contrast, there is a negligible intrinsic background to a quantum ghost image. However, for practical reasons
involving achievable illumination levels, acquisition times for thermal ghost images are often much shorter than
those for quantum ghost images. We provide quantitative predictions for the conditions under which each process
provides superior performance. Our conclusion is that each process can provide useful functionality, although
under complementary conditions.
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I. INTRODUCTION

Ghost imaging is a procedure for forming the image of an
object indirectly, by means of correlation measurements. It
is called ghost imaging because the photons that provide the
spatial information regarding the object have never directly
interacted with the object to be imaged. Ghost imaging
thus provides capabilities for image formation under un-
usual conditions, such as those that might apply for covert
surveillance.

Two primary methods have emerged for forming ghost
images. One is to make use of the correlations between photons
produced by parametric down-conversion [1,2]. In this paper,
we will refer to this method as quantum ghost imaging. The
other method is to make use of the spatial correlations between
two copies (usually formed by a beam splitter) of a speckle
pattern or of a thermal light source [3,4]. In this paper we will
refer to this method as thermal ghost imaging.

Both of these methods have proven useful in laboratory
demonstrations of ghost imaging [1,4–12]. However, it is
somewhat uncertain exactly what the trade-offs are between
the two methods, and especially which one is expected to
perform better under specified circumstances. In this paper, we
perform calculations aimed at quantifying the performance of
each of these methods. We note that related calculations have
been presented by others [13–20].

Before we develop our detailed theoretical treatment of
ghost imaging, we present here a qualitative comparison
between these two methods.

Quantum ghost imaging makes use of the entangled photon
pairs produced by spontaneous parametric down-conversion.
As down-conversion tends to be an inefficient process, it
produces a rather weak light source. In fact, quantum ghost
imaging is often performed with light sources that produce at
most 106 photon pairs per second. The photons are typically
detected using single-photon detectors such as avalanche
photodiodes, and the correlation is performed numerically
using digital methods. The spatial resolution of the ghost
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image is determined by the transverse distance scale of
the correlations between the two down-converted photons,
which is determined by the phase-matching properties of
the nonlinear crystal that produces the down-conversion.
There is no intrinsic background to the ghost image, and
the only intrinsic source of noise is that imposed by photon
statistics.

In contrast, thermal ghost imaging uses two copies of
a light field with limited transverse spatial coherence. The
light source is typically a pseudothermal source produced by
scattering laser light off a rotating ground glass plate [8–11],
although true thermal sources have also been used [4,12]. In
either case, the light source is usually much more intense
than those used in quantum ghost imaging, which allows for
a more rapid acquisition of the ghost image. The correlation
that produces the ghost image can be performed using either
analog or digital methods. The spatial resolution of the ghost
image is determined by the transverse coherence (speckle
size) of the light source. Ghost images are always formed on
a large background, and the fluctuations in the background
impose an intrinsic noise to the process of thermal ghost
imaging.

II. THERMAL GHOST IMAGING

We first consider the analysis of the experimental configu-
ration shown in Fig. 1. Spatially incoherent light is formed
by scattering laser light off a rotating ground glass plate
and is split into two beams by a beam splitter of intensity
transmittance T and reflectance R. The light reflected by
the beam splitter is incident on an object described by the
intensity transmission function Tobj(xB) and is then collected
on a nonspatially resolving energy meter known as a bucket
detector. The light transmitted by the beam splitter is incident
on a spatially resolving detector such as a CCD.

Measurements of this sort are repeated K times, each time
with a different speckle pattern. The ghost image of the object
is then formed in the following manner. The pattern recorded
by the CCD array is multiplied by the energy measured by
the energy meter, and this result is summed over all of the K

measurements. From Glauber’s detection theory, we can write
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FIG. 1. (Color online) Typical thermal ghost imaging experimen-
tal setup.

the quantum operator for the ghost image signal for a pixel
centered at point x as

Ŝ(x) =
K∑

k=1

∫
�(x)

dxA

∫
dxB b̂

†
k,B ĉ

†
k,Ab̂k,B ĉk,A, (1)

where �(x) is the area of the pixel, and b̂k,B and ĉk,A are
the annihilation operators for the fields at point xB in the
energy meter arm and at point xA in the CCD arm for the kth
realization of the source. Here and throughout this paper we
use the convention that the limits of integration of all integrals
is the entire transverse plane unless otherwise noted. Thus,
the integral over xB is taken to be the entire transverse plane,
whereas the integral over xA is taken over the area of a pixel.

To proceed, we write the operators b̂ and ĉ, which act on
the field in the detection planes, in terms of the operator â,
which acts on the field in the source plane. We accomplish this
in two stages. First, the operators ĉ and d̂ that act on the field
after the beam splitter are written in terms of the âk through
the standard beam splitter relations given by

ĉk,A = i
√

Râk,A +
√

T v̂k,A, (2)

d̂k,B = i
√

Rv̂k,B +
√

T âk,B, (3)

where v̂ is the annihilation operator for the mode entering
the unused port of the beam splitter. The subscripts indicate
that the operators are associated with the kth realization of the
source at transverse field points xA and xB .

Second, we relate the operator b̂ that acts on the field
entering the energy meter to the operator d̂ that acts on
the field illuminating the object with intensity transmission
function Tobj(xB). As is typical in quantum descriptions of
lossy processes [21], the operators are related through another
beam splitter relation given by

b̂k,B = √
Tobj(xB)d̂k,B + i

√
1 − Tobj(xB)v̂′

k,B, (4)

where v̂′ is an annihilation operator describing an auxiliary
vacuum field. The subscripts have the same meaning as
previously described. Both vacuum modes acted on by v̂ and
v̂′ contribute to the noise of the ghost image at low photon
levels.

A. Expected thermal ghost image

We next calculate the expectation value of the image
signal operator Ŝ. We assume that for each measurement
the incoherent light field can be modeled as an independent
Gaussian-Schell model (GSM) source. A GSM source can be

fully characterized by its second-order correlation function
which we represent as

〈â†
k,Aâk,B〉 = N exp

[
−|xA|2 + |xB |2

2w2

]
exp

[
−|xA − xB |2

2σ 2

]
,

(5)

where N is the mean number of photons per unit area at the
center of the GSM beam, âk,(A,B) is the annihilation operator
as defined before, w gives the transverse size of the field, and
σ describes the transverse spatial coherence of the field. For
simplicity, w and σ are taken to be the sizes at the detection
plane. Chan et al. [20] discuss how w and σ are modified
by propagation in a ghost imaging experiment. All higher-
order moments can be calculated in terms of the second-order
moments through use of the Gaussian moment theorem [22].

The expected signal is given by the ensemble average of
Eq. (1) over the K measurements. By applying Eqs. (1)–(5) as
well as the Gaussian moment factoring theorem, we obtain

〈Ŝ(x)〉 = N 2RT K

∫
�(x)

dxA

∫
dxB exp

[
−|xA|2 + |xB |2

w2

]

×
(

1 + exp

[
−|xA − xB |2

σ 2

])
Tobj(xB). (6)

At this point, we make some assumptions that greatly
simplify the ensuing development. First, we assume that the
transverse extent of the illuminating speckle field is sufficiently
large that its mean intensity is essentially constant over the
transverse size of both the CCD array and the object (i.e.,
exp(−|xA,B |2/w2) ≈ 1). Second, we assume that the source
has a sufficiently small transverse coherence length that the
transmission of the object does not vary significantly on
the scale of the coherence length (i.e., Tobj(x)e−|x−x0|2/σ 2 ≈
Tobj(x0)e−|x−x0|2/σ 2

). Finally, we assume that each pixel of the
CCD is sufficiently small that both Tobj(x) and e−|x|2/σ 2

are
approximately constant over �(x). Using these assumptions,
we can rewrite 〈Ŝ(x)〉 as

〈Ŝ(x)〉 = N 2RT K�

[∫
dxTobj(x) + πσ 2Tobj(x)

]
, (7)

where � is the area of one pixel of the CCD. This expression
can be rewritten in a more intuitive fashion as

〈Ŝ(x)〉 = KN�[NB + NSTobj(x)], (8)

where N� ≡ R�N is the average number of photons incident
on one pixel of the CCD per realization, NB ≡ TN

∫
dxTobj(x)

is the average number of photons transmitted through the
object and incident on the bucket detector per realization,
and NS ≡ T πσ 2N is the average number of photons in one
coherence area (i.e., in one “speckle”) incident on the object
per realization.

Clearly, the image-carrying portion of the signal rides
on an object-dependent background proportional to NB. The
mean background level can be determined by considering the
total signal at a point xbkgd where Tobj(xbkgd) = 0. Thus, the
background is given by

〈Ŝ〉bkgd = KN�NB. (9)
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Moreover, the image-carrying portion of the signal is given by

〈Ŝ(x)〉image = KN�NSTobj(x). (10)

From these results we see that the maximum signal-to-
background ratio 〈Ŝ〉image/〈Ŝ〉bkgd is equal to NS/NB, which
is inversely proportional to the number of speckles transmitted
through the object. In other words, the contrast becomes
degraded as the number of speckles transmitted through the
object increases.

Intuitively we can understand this behavior as follows. The
speckles incident on each pixel of the CCD are correlated only
with the speckles passing through the corresponding position
of the object. These speckles are responsible for the image-
carrying portion of the signal. However, the bucket detector
also detects uncorrelated speckles that pass through other
regions of the object. These speckles lead to a background
contribution to the signal. As the number of speckles trans-
mitted through the object increases, the background increases
linearly with no corresponding increase in the image-carrying
portion of the signal. Hence, the contrast is reduced.

B. Signal-to-noise ratio

We next calculate the signal-to-noise ratio. In performing
this calculation, we consider the “signal” to be the expectation
value of the image-carrying portion of the signal, which we
introduced as Eq. (10) in the previous section. The “noise” is
defined in a root-mean-squared sense. As already mentioned,
the image-carrying portion of the signal rides on a noisy
background that is partially correlated with the image-carrying
portion of the signal itself. Because of this correlation, noise
in the image-carrying portion of the signal and noise in
the background can partially cancel each other when the
background is subtracted.

To account for this behavior, we introduce the operator
Ŝimage for the background-subtracted image. We first note that
the background at image point x is given by the product of the
average signal of the energy meter with the average signal of
the CCD pixel centered at x. We can thus write the operator
for the background portion of the signal as

Ŝbkgd(x) = 1

K

K∑
m,n=1

∫
�(x)

dxA

∫
dxB b̂

†
m,B ĉ

†
n,Ab̂m,B ĉn,A. (11)

Thus, the image-carrying portion of the signal is described by
the background-subtracted image operator,

Ŝimage(x) = K

K − 1
[Ŝ(x) − Ŝbkgd(x)], (12)

where K/(K − 1) is the usual factor needed to obtain an
unbiased estimate of the imaging signal. Of course, in the
usual limit of large K this factor approaches unity. Taking the
ensemble average of Eq. (12) and substituting in Eqs. (1)–(5)
and (9), the result shown in Eq. (10) is recovered as expected.
The variance of Ŝimage is given by

(�Ŝ)2
image = K2

(K − 1)2

[
(�Ŝ)2 + (�Ŝ)2

bkgd − 2cov(Ŝ,Ŝbkgd)
]
,

(13)

where (�Ŝ)2 and (�Ŝ)2
bkgd are the variances of Ŝ and Ŝbkgd.

The covariance between the total signal and the background
is given by cov(Ŝ,Ŝbkgd). The calculation of the (�Ŝ)2

image is
straightforward but lengthy and is presented in the appendix.
Through use of Eq. (A15) of the appendix, and in the common
situation in which K � 1, we find that the signal-to-noise ratio
is given by

RSN
th = 〈Ŝ(x)〉image

(�Ŝ)image
=

√
KN�

NSTobj(x)

[α1 + α2 + α3]1/2
, (14)

where αm are quantities that depend on the mth power of the
the photon number N and are given by

α1 ≡ NB + NSTobj(x),

α2 ≡ N�NB + NSN
(2)
B + 2NSTobj(x)

[
4
3NSTobj(x) + N�

]
,

α3 ≡ N�NS
[
N

(2)
B + 25

3 NST
2

obj(x)
]
,

where N
(2)
B ≡ TN

∫
dxT 2

obj(x). Clearly, for a binary object

N
(2)
B = NB.
Although this result is in general quite complicated, its

limiting cases lead to simple expressions. For example, we
first assume that the object is highly transmitting such that
NB,N

(2)
B � NS, and we furthermore assume that NS � N�.

Moreover, we consider an object point where Tobj(x) =
1. Then, in the low-photon-flux limit (much fewer than
one photon per speckle) for which α1 dominates, RSN

th →
NS[KN�/NB]1/2. This result can be understood intuitively
by recognizing that, in the low-photon-flux limit, the signals
from both the energy meter and the CCD are dominated by
shot noise. Thus, the noise of the product of the detected
signals is given approximately by (N�NB)1/2, which leads
directly to the quoted result. In the high-photon-flux limit,
where α3 dominates, RSN

th → [KNS/N
(2)
B ]1/2, which is in-

dependent of the average photon flux. In both cases, when
the object is binary (i.e., NB = N

(2)
B ), the signal-to-noise

ratio varies inversely with the square root of the transmitting
area of the object, which agrees with the results found
in Ref. [13].

III. QUANTUM GHOST IMAGING

In quantum ghost imaging, the object and spatially resolv-
ing detector array are illuminated by photons produced by the
process of spontaneous parametric down-conversion (SPDC),
and coincidence detections events between the pixels on the
detector array and bucket detector are recorded. In our analysis,
we consider the biphoton limit of type-II SPDC and neglect the
contributions of the emission of multiple pairs. We assume that
K biphotons are used to create the image. Since the K-photon
pairs are independent of one another, the wave function of the
ensemble of biphotons can be written as the tensor product of
K-biphoton states (i.e., |ψ〉⊗K ) where

|ψ〉 = 1

πσw

∫
dxA

∫
dxB exp

[
−|xA + xB |2

2w2

]

× exp

[
−|xA − xB |2

2σ 2

]
b̂

′†
Aĉ

†
B |0,0〉 (15)
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FIG. 2. (Color online) Typical experimental setup for performing
quantum ghost imaging. SPDC, spontaneous parametric down-
converter.

is the biphoton wave function of one realization, where w is the
transverse size of the pump field, and σ determines transverse
spatial coherence of the biphoton [23]. The operators b̂′

A and
ĉB are the annihilation operators for signal and idler fields at
the point with transverse coordinates xA and xB for a given
realization.

A typical quantum ghost imaging setup is shown in
Fig. 2. Since in type-II SPDC the emitted photons can
be deterministically separated at a polarizing beam splitter,
we do not need to consider contributions due to the vacuum
mode at the unused port of the beam splitter. For simplicity,
we assume that exit face of the nonlinear crystal is imaged
onto both the object plane and the plane of the detector array
with unit magnification. Thus, the wave function given in
Eq. (15) describes the two-photon state of the signal photon
at the object plane and the idler photon on the plane of the
detector array. We note that quantum ghost imaging can be
performed using other lens configurations. Ref. [20] discusses
how to rescale xA,B , σ , and w in Eq. (15) to account for these
configurations.

A. Expected quantum ghost image

Proceeding in the same manner as in Sec. II A, we
calculate the expected signal level for a quantum ghost image
produced by K biphotons. Using Eqs. (1) and (15), we find
that

〈Ŝ(x)〉 = K

πσ 2w2

∫
�(x)

dxA

∫
dxB exp

[
−|xA + xB |2

w2

]

× exp

[
−|xA − xB |2

σ 2

]
Tobj(xB). (16)

By adjusting the pump beam size and the crystal length, we
can control w and σ . Making the same set of assumptions for
the relative sizes of w, σ , �, and the extent of Tobj as detailed
in Sec. II A, we can write the expected quantum ghost image
as

〈Ŝ(x)〉 = Kp�Tobj(x), (17)

where p� ≡ �/(πw2) is the probability that a photon falls
onto a specific pixel of area � of the detector array. From this
expression we see that, unlike as in thermal ghost imaging,
a quantum ghost image does not rest on a background. This

behavior follows from the strong spatial correlations that each
photon pair exhibits. A coincidence is registered only when the
signal photon is transmitted through the object and the idler
photon is incident on the corresponding pixel of the detector
array.

B. Signal-to-noise ratio

We define the signal-to-noise ratio in a manner similar
to that of Sec. II B. The signal is given by Eq. (17). Since
the quantum ghost image does not rest on a background,
no background-subtraction methods need to be implemented.
Thus, the noise is calculated as the root-mean-squared de-
viation of the imaging operator Ŝ from the expected image
signal. We calculate the variance of S from 〈(S − 〈S〉)2〉 using
the state given in Eq. (15) and find that under the usual
approximations,

(�Ŝ)2 = Kp�Tobj(x)[1 − p�Tobj(x)] ≈ Kp�Tobj(x), (18)

where the final approximation is justified since p� 
 1 in the
biphoton limit of parametric down-conversion. This result is
not surprising since the quantum image is formed by counting
coincident detection events, whose noise is characterized by
Poissonian noise, for which the variance is equal to the mean.
Thus, the signal-to-noise ratio is found to be

RSN
qu = 〈Ŝ〉

(�Ŝ)
= √

Kp�Tobj(x). (19)

As with thermal ghost imaging, the SNR of a quantum ghost
image can be made arbitrarily large by increasing K . Unlike
the SNR of a thermal ghost image, the SNR of a quantum
ghost image depends only on the transmittance of the object
at the point of interest. Recall that, in contrast, the noise of a
thermal ghost image degrades as the total transmittance of the
entire object increases.

IV. DISCUSSION AND CONCLUSIONS

In this section we compare the performance of thermal and
quantum ghost imaging under various different circumstances.

We first compare the performance of the two methods under
the assumption that the illumination levels used in the two
methods are the same. In particular, we assume that the average
number of photons incident on one pixel of the detector array
per realization for the thermal case N� is equal to the average
number of photons p� for the quantum case. By assumption,
p� 
 1, because in the quantum case there is only one photon
per measurement and there are many pixels. We thus make
use of the results for the low-photon-flux approximation of
Eq. (14) for the thermal case and we make use of Eq. (19) for
the quantum case. The ratio of the SNRs in the two cases is
thus given by

RSN
th

RSN
qu

= NS
√

Tobj(x)

[NB + NSTobj(x)]1/2
. (20)

This ratio is less than or equal to
√

NS. Since we assumed
that only one photon interrogates the object, NS must be very
much smaller than unity and we conclude that RSN

th 
 RSN
qu .

Thus, quantum ghost imaging always yields a superior image
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when the object is illuminated at the single-photon level for
each individual measurement.

However, as we noted in the introduction, one of the
advantages of thermal ghost imaging over quantum ghost
imaging is its ability to operate at higher intensities and thus
produce larger signal-to-noise ratios. Indeed, we showed in
Sec. II B that when imaging a binary object at high intensities,
RSN

th,N�1 = [KNS/NB]1/2. If we interpret the quantity NB/NS

as the number of speckles transmitted through the object
and 1/p� as the total number of illuminated pixels in the
object plane, it follows that NS/NB < p�. Using these results
together with Eq. (19), we find that RSN

th,N�1 > RSN
qu and

conclude that thermal ghost imaging at high intensities always
outperforms quantum ghost imaging.

It is useful then to determine the critical illumination level
for which thermal ghost imaging yields the same SNR as
quantum ghost imaging. For reasons that we justify below,
we use the low-photon-flux approximation to RSN

th , that is, we
assume that NS 
 1. We also make the simplifying assumption
of a highly transmitting object so that NB � NS. We consider
the signal at a fully transmitting point on the object such that
Tobj(x) = 1. We then solve for the value of NS for which
RSN

th = RSN
qu . We thereby find that the two imaging methods

perform comparably whenever the average number of photons
per speckle in the field illuminating the object satisfies the
condition,

NS,crit =
√

A/(πw2), (21)

where A ≡ NB/N is equal to the transmitting area of the
object for a binary object. We note that this ratio is often much
smaller than unity, so we were justified in using the low-photon
flux approximation to RSN

th . We conclude that even for very
modest illumination intensities for which NS > NS,crit, thermal
ghost imaging produces better images than quantum ghost
imaging.

Another way to compare the two imaging methods is to
compare the resulting SNRs when the same, fixed number
of photons is used to illuminate the object. This sort of
comparison might be relevant under circumstances for which
photons are very costly or in which one wants to minimize
the illumination levels for reasons of stealth. Recall that
thermal ghost imaging uses πw2NK photons to obtain the
image, whereas quantum ghost imaging uses 2K photons total.
Figure 3 shows a plot of the SNR as a function of the total
number of photons used for the two different methods. For
a thermal ghost image we can increase the total number of
photons used in two ways. One way is to increase the intensity
of the light illuminating the object (i.e., by increasing N ).
Alternatively, we can increase the total number of photons
by increasing the number of realizations K . In quantum ghost
imaging, we can increase the number of photons used to obtain
the image only by increasing K , because by assumption the
biphoton source produces only one photon pair at a time.
The three thermal ghost imaging curves in the figure assume
different fixed values of K; in each case the illumination
level N is allowed to vary to control the total number of
photons used to obtain the image. From the plot it is clear
that quantum ghost imaging always performs better when
only a fixed number of photons are available to illuminate

1010
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FIG. 3. (Color online) Signal-to-noise (SNR) ratio achievable by
either quantum or thermal ghost imaging plotted against the total
number of photons used in the illuminating field. The dotted portion
of the quantum imaging curve cannot be realistically attained using
current biphoton sources but is shown for completeness. The three
curves for thermal ghost imaging correspond to different numbers K

of realizations (speckle patterns) that are averaged together to form
the ghost image. We take the object to be a binary object with total
transmitting area of 104 pixels and the characteristic area of a speckle
to be πσ 2 = 100 pixels. We assume that the illumination beam has a
cross-sectional area of 105 pixels.

the object. We note that using current biphoton sources,
quantum ghost images with SNRs requiring K >∼ 1012 are
not practical, in which cases thermal ghost imaging must be
used.

The results presented in this article are formally consistent
with those of Erkmen and Shapiro [13], although we have
chosen a different form of graphical display to illustrate our
results and have chosen different special cases to treat, and
thus different insight is provided by our analysis. Recent
calculations demonstrate that, for identical values of the spatial
coherence parameter σ at the source plane in comparable
quantum and thermal ghost imaging systems, both systems
produce images with the same resolution [20]. The present
analysis concludes, however, that a typical quantum ghost
imaging system yields a poorer-quality image in terms of
its SNR than a thermal ghost image system. A thermal
ghost imaging system needs only a slightly higher average
illumination intensity to outperform a quantum ghost imaging
system. However, in photon-limited situations, quantum ghost
imaging systems perform substantially better than thermal
ghost imaging systems.
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APPENDIX

We now work out the variance of the thermal ghost imaging
signal in detail, using the assumptions made in the body of the
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text. The variance of the total signal (�Ŝ)2, introduced in
Eq. (13), is given by

(�Ŝ)2 =
K∑

j,k=1

∫ ∫
�(x)

dxAdx′
A

∫ ∫
dxBdx′

B

× [〈b̂†j,B b̂j,B ĉ
†
j,Aĉj,Ab̂

†
k,B ′ b̂k,B ′ ĉ

†
k,A′ ĉk,A′ 〉

− 〈b̂†Bb̂B ĉ
†
AĉA〉〈b̂†B ′ b̂B ′ ĉ

†
A′ ĉA′ 〉]. (A1)

When j �= k, the term in brackets will vanish. The remaining
K terms will involve expectation values independent of the
summation index, so the resulting expression can be written
as

(�Ŝ)2 = K

∫ ∫
�(x)

dxAdx′
A

∫ ∫
dxBdx′

B

× [〈n̂B n̂An̂B ′ n̂A′ 〉 − 〈n̂B n̂A〉〈n̂B ′ n̂A′ 〉], (A2)

where n̂i = b̂
†
i b̂i for i = B,B ′ and n̂j = ĉ

†
j ĉj for j = A,A′.

We treat the variance of the background portion of the signal
in a similar fashion:

(�Ŝ)2
bkgd = 1

K2

K∑
j,k,r,s=1

∫ ∫
�(x)

dxAdx′
A

∫ ∫
dxBdx′

B

× [〈b̂†j,B b̂j,B ĉ
†
k,Aĉk,Ab̂

†
r,B ′ b̂r,B ′ ĉ

†
s,A′ ĉs,A′ 〉

− 〈b̂†j,B b̂j,B ĉ
†
k,Aĉk,A〉〈b̂†r,B ′ b̂r,B ′ ĉ

†
s,A′ ĉs,A′ 〉]. (A3)

When j,k �= r,s, the term in brackets vanish. The remaining
terms can be grouped into instances when (j = k = r =
s),(j �= k = r = s),(j = k �= r = s), etc., yielding

(�Ŝ)2
bkgd

= 1

K2

∫ ∫
�(x)

dxAdx′
A

∫ ∫
dxBdx′

B

×{K[〈n̂B n̂An̂B ′ n̂A′ 〉 − 〈n̂B n̂A〉〈n̂B ′ n̂A′ 〉]
+ 2K(K − 1)[〈n̂B〉〈n̂B ′ n̂An̂A′ 〉 + 〈n̂A〉〈n̂B n̂B ′ n̂A′ 〉
− 2〈n̂A〉〈n̂B〉〈n̂B ′ n̂A′ 〉] + K(K − 1)[〈n̂B n̂B ′ 〉〈n̂An̂A′ 〉
+ 〈n̂B n̂A〉〈n̂A′ n̂B ′ 〉 − 2〈n̂B〉〈n̂B ′ 〉〈n̂A〉〈n̂A′ 〉]
+K(K − 1)(K − 2)〈n̂A〉〈n̂A′ 〉[〈n̂B n̂B ′ 〉 − 〈n̂B〉〈n̂B ′ 〉]
+ 2K(K − 1)(K − 2)〈n̂B〉〈n̂A〉[〈n̂B ′ n̂A′ 〉 − 〈n̂B ′ 〉〈n̂A′ 〉]
+K(K − 1)(K − 2)〈n̂B〉〈n̂B ′ 〉[〈n̂An̂A′ 〉 − 〈n̂A〉〈n̂A′ 〉]}.

(A4)

Finally, the covariance between the total signal and the
background portion can be written,

cov(Ŝ,Ŝbkgd) = 1

K

K∑
j,r,s=1

∫ ∫
�(x)

dxAdx′
A

∫ ∫
dxBdx′

B

× [〈b̂†j,B b̂j,B ĉ
†
j,Aĉj,Ab̂

†
r,B ′ b̂r,B ′ ĉ

†
s,A′ ĉs,A′ 〉

− 〈b̂†Bb̂B ĉ
†
AĉA〉〈b̂†r,B ′ b̂r,B ′ ĉ

†
s,A′ ĉs,A′ 〉]. (A5)

As in the preceding equations, we can simplify this expression
to read

cov(Ŝ,Ŝbkgd) = 1

K

∫ ∫
�(x)

dxAdx′
A

∫ ∫
dxBdx′

B

×{K[〈n̂B n̂An̂B ′ n̂A′ 〉 − 〈n̂B n̂A〉〈n̂B ′ n̂A′ 〉]

+K(K − 1)[〈n̂B〉〈n̂B ′ n̂An̂A′ 〉
+ 〈n̂A〉〈n̂B n̂B ′ n̂A′ 〉 − 2〈n̂A〉〈n̂B〉〈n̂B ′ n̂A′ 〉]}.

(A6)

Substituting Eqs. (A2),(A4), and (A6) into Eq. (13), we find

(�Ŝ)2
image = K

∫ ∫
�(x)

dxAdx′
A

∫ ∫
dxBdx′

B

×
{

[〈n̂B n̂An̂B ′ n̂A′ 〉 − 〈n̂B n̂A〉〈n̂B ′ n̂A′ 〉]
− 2[〈n̂B〉〈n̂B ′ n̂An̂A′ 〉 + 〈n̂A〉〈n̂B n̂B ′ n̂A′ 〉
− 2〈n̂A〉〈n̂B〉〈n̂B ′ n̂A′ 〉] + K − 2

K − 1
[〈n̂A〉〈n̂A′ 〉

× (〈n̂B n̂B ′ 〉 − 〈n̂B〉〈n̂B ′ 〉) + 2〈n̂B〉〈n̂A′ 〉
× (〈n̂B ′ n̂A〉 − 〈n̂B ′ 〉〈n̂A〉) + 〈n̂B〉〈n̂B ′ 〉(〈n̂An̂A′ 〉
− 〈n̂A〉〈n̂A′ 〉)] + 1

K − 1
[〈n̂B n̂B ′ 〉〈n̂An̂A′ 〉

+ 〈n̂B n̂A′ 〉〈n̂An̂B ′ 〉 − 2〈n̂B〉〈n̂B ′ 〉〈n̂A〉〈n̂A′ 〉]
}
.

(A7)

To proceed, we apply normal ordering and our beam-splitter
relations. We substitute the following set of relations for the
correlation functions into the above equation:

〈n̂B n̂An̂B ′ n̂A′ 〉
→ RT Tobj(xB)δ(xA − x′

A)δ(xB − x′
B)〈:n̂B n̂A:〉

+R2T Tobj(xB)δ(xB − x′
B)〈:n̂B n̂An̂A′ :〉

+RT 2Tobj(xB)Tobj(x′
B)δ(xA − x′

A)〈:n̂B n̂B ′ n̂A:〉
+R2T 2Tobj(xB)Tobj(x′

B)〈:n̂B n̂B ′ n̂An̂A′ :〉,
〈n̂B ′ n̂An̂A′ 〉 → RT Tobj(x′

B)δ(xA − x′
A)〈:n̂B ′ n̂A:〉

+R2T Tobj(x′
B)〈:n̂B ′ n̂An̂A′ :〉, (A8)

〈n̂B n̂B ′ n̂A′ 〉 → RT Tobj(xB)δ(xB − x′
B)〈:n̂B n̂A′ :〉

+RT 2Tobj(xB)Tobj(x′
B)〈:n̂B n̂B ′ n̂A′ :〉,

〈n̂B n̂A〉 → RT Tobj(xB)〈:n̂B n̂A:〉, (A9)

〈n̂B n̂B ′ 〉 → T Tobj(xB)δ(xB − x′
B)〈n̂B〉

+ T 2Tobj(xB)Tobj(x′
B)〈:n̂B n̂B ′ :〉, (A10)

〈n̂An̂A′ 〉 → Rδ(xA − x′
A)〈n̂A〉 + R2〈:n̂An̂A′ :〉, (A11)

〈n̂B〉 → T Tobj(xB)〈n̂B〉, (A12)

〈n̂A〉 → R〈n̂A〉, (A13)

where n̂i = â
†
i âi for i = A,B,A′,B ′ on the right-hand side of

the relations.
We expand the normally ordered correlation functions using

the Gaussian moment factoring theorem and implement the
approximations mentioned previously to obtain

(�Ŝ)2
image

= KN�

{
NB + NSTobj(x) + NSN

(2)
B + 2N�NSTobj(x)

+ 8

3
N2

ST 2
obj(x) + 25

3
N�N2

ST 2
obj(x) − 2N�NSNBTobj(x)

−N2
B (N� + 1)

}
+ K

K − 1

K − 2
N�

{
N2

B(N� + 1)
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+N�NB + N�NSN
(2)
B + 2N�NSNBTobj(x)

}
+ K

K − 1
N�

{
NB + N2

B + NSN
(2)
B

+N�

[
2NB + 2NSN

(2)
B + 2NSNBTobj(x)

+N2
B + N2

ST 2
obj(x)

]}
. (A14)

In the usual limit of large K , this expression simplifies
to

(�Ŝ)2
image = KN�

{
(N� + 1)

(
NB + NSN

(2)
B

) + NSTobj(x)

× [
1 + 2N�+ 1

3NSTobj(x)(8 + 25N�)
]}

.

(A15)
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